Identification

Title

The striated solar photosphere observed at 0". 03 resolution

Abstract

<p> Striated granular edges observed in the solar photosphere represent one of the smallest-scale phenomena on the Sun. They arise from the interaction of strongly coupled hydrodynamic, magnetic, and radiative properties of the plasma. In particular, modulations in the photospheric magnetic field strength cause variations in density and opacity along the line of sight, leading to their formation. Therefore, the striation patterns can be used as valuable diagnostics for studying the finest-scale structure of the photospheric magnetic field. The Daniel K. Inouye Solar Telescope (DKIST) allows observations of the solar atmosphere with a spatial resolution of better than 0 <?CDATA $\mathop{.}\limits^{^{\prime\prime} }$?>.&#8243; 03 with its current instrumentation. We analyze images acquired with the Visible Broadband Imager using the G -band channel to investigate the characteristics of fine-scale striations in the photosphere and compare them with state-of-the-art radiation-MHD simulations at similar spatial resolution. Both observed and synthetic images reveal photospheric striae with widths of approximately 20&#8722;50 km, suggesting that at least 4 m class solar telescopes are necessary to resolve this ultrafine structure. Analysis of the numerical simulations confirms that the striation observed in the filtergrams is associated with spatial variations in photospheric magnetic flux concentrations, which cause shifts in the geometrical height where the emergent intensity forms. Some fine-scale striations in the synthetic images originate from magnetic field variations of approximately 100 G, resulting in Wilson depressions as narrow as 10 km. This suggests that DKIST G -band images can trace the footprints of magnetic field variations and Wilson depressions at a similar scale. </p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d72v2mk6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-05-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:49:21.062393

Metadata language

eng; USA