Identification

Title

Assessing clouds in GFDL's AM4.0 with different microphysical parameterizations using the satellite simulator package COSP

Abstract

We evaluate cloud simulations using satellite simulators against multiple observational data sets. These simulators have been run within the Geophysical Fluid Dynamics Laboratory's Atmosphere Model version 4.0 (AM4.0), as well as an alternative configuration where a fully two‐moment Morrison‐Gettelman cloud microphysical parameterization with prognostic precipitation (MG2) is applied, denoted as AM4‐MG2. The modeled cloud spatial distributions, vertical profiles, phase partitioning, cloud‐to‐precipitation transitions, and radiative effects compare reasonably well with satellite observations. Model biases include the under‐prediction of total and low‐level clouds, especially optically thin/intermediate clouds with cloud optical depth of less than 23, but the over‐prediction of thick clouds, indicating “too few, too bright” biases. These biases counteract each other, and give rise to reasonable estimates of cloud radiative effects. The underestimate of low‐level clouds is associated with too early and too frequent drizzle/precipitation formation. The precipitation bias is improved in AM4‐MG2, where the autoconversion scheme initiates the precipitation more realistically. There also exist discrepancies between models and observations for midlevel and high‐level clouds. Additional biases include the underestimate of liquid cloud fraction and the overestimate of ice cloud fraction.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7jw8kbm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:48:01.685315

Metadata language

eng; USA