Identification

Title

Mid-Pliocene climate forcing, sea surface temperature patterns, and implications for modern-day climate sensitivity

Abstract

Characterized by similar-to-today CO 2 levels (∼400 ppm) and surface temperatures approximately 3°–4°C warmer than the preindustrial, the mid-Pliocene warm period (mPWP) has often been used as an analog for modern CO 2 -driven climate change and as a constraint on the equilibrium climate sensitivity (ECS). However, model intercomparison studies suggest that non-CO 2 boundary conditions—such as changes in ice sheets—contribute substantially to the higher global mean temperatures and strongly shape the pattern of sea surface warming during the mPWP. Here, we employ a set of CESM2 simulations to quantify mPWP effective radiative forcings, study the role of ocean circulation changes in shaping the patterns of sea surface temperatures, and calculate radiative feedbacks during the mPWP. We find that the non-CO 2 boundary conditions of the mPWP, enhanced by changes in ocean circulation, contributed to larger high-latitude warming and less-stabilizing feedbacks relative to those induced by CO 2 alone. Accounting for differences in feedbacks between the mPWP and the modern (greenhouse gas–driven) climate provides stronger constraints on the high-end of modern-day ECS. However, a quantification of the forcing of non-CO 2 boundary condition changes combined with the distinct radiative feedbacks that they induce suggests that Earth system sensitivity may be higher than previously estimated.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7wm1jw2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2025 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:45:30.764808

Metadata language

eng; USA