Identification

Title

Aerosol-cloud interactions in cirrus clouds based on global-scale airborne observations and machine learning models

Abstract

Cirrus cloud formation and evolution are subject to the influences of thermodynamic and dynamic conditions and aerosols. This study developed near global-scale in situ aircraft observational datasets based on 12 field campaigns that spanned from the polar regions to the tropics from 2008 to 2016. Cirrus cloud microphysical properties were investigated at temperatures ≤ −40 °C, including ice water content (IWC), ice crystal number concentration (Ni​​​​​​​), and number-weighted mean diameter (Di). Positive correlations were found between the fluctuations of these ice microphysical properties and the fluctuations of aerosol number concentrations for larger (> 500 nm) and smaller (> 100 nm) aerosols (i.e. Na500 and Na100, respectively). Steeper linear regression slopes were seen for large aerosols compared with smaller aerosols. Machine learning (ML) models showed that using relative humidity with respect to ice (RHi) as a predictor significantly increased the accuracy of predicting cirrus occurrences compared with temperature, vertical velocity (w), and aerosol number concentrations. The ML predictions of IWC fluctuations showed higher accuracies when larger aerosols were used as a predictor compared with smaller aerosols, even though their effects were similar when predicting cirrus occurrences. To predict IWC magnitudes accurately, aerosol concentrations were particularly important at 50 to 250 s scales (i.e. 10–50 km) and showed increasing effects at low temperatures, small ice supersaturation, and strong updraughts/downdraughts. These results improve the understanding of aerosol–cloud interactions and can be used to evaluate model parameterizations of cirrus cloud properties and processes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d71c229v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-07-10T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:45:04.784102

Metadata language

eng; USA