Identification

Title

Evaluating the role of internal climate variability and bias adjustment methods on decadal glacier projections

Abstract

Glacier mass loss is one of the main contributors to sea‐level rise and poses challenges for future water resources. Refining glacier projections and sources of uncertainty thus supports climate adaptation and mitigation. Here we explicitly quantify the impact of internal climate variability and climate data bias adjustment methods on regional and global glacier projections through 2100 for various emissions scenarios. Uncertainty from internal climate variability is comparable to climate model structural uncertainty (i.e., arising from physical representations and parameter settings) in the coming decades at the regional level, but is not a major source of uncertainty in centennial global glacier projections. Bias adjustment options (method and time period) moderately impact projections at regional and glacier scales, but have a smaller impact (∼2% of global glacier mass at 2100, relative to 2020) at global scales. In some regions, the uncertainty due to internal climate variability is larger than climate model structural uncertainty for the entirety of the 21st century, and bias adjustment options can nearly double the regional uncertainty by 2100. At the glacier scale, bias adjustments can lead to differences in projected decadal and centennial mass loss of up to 30%, although these greatest differences are associated with the smallest (<1 km 2 ) glaciers. Overall, internal climate variability and climate data bias adjustment methods are important to consider, especially in regional applications, to better estimate uncertainty in future sea‐level rise and water resources availability.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7dj5m32

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:46:02.697320

Metadata language

eng; USA