Towards understanding the variability in biospheric COâ fluxes: Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to COâ
Understanding carbon dioxide (COâ) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of COâ in the atmosphere. Atmospheric inversions based on COâ concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both COâ and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and COâ performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and COâ using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and COâ from the simple biosphere model (SiB) are used in the study. The COâ simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.
document
https://n2t.org/ark:/85065/d780545d
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-02-25T00:00:00Z
Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-12-26T02:54:53.918530