Identification

Title

Untangling the broadening of adiabatic cloud droplet spectra through eddy hopping in a high-resolution cumulus congestus simulation

Abstract

Turbulence has long been considered an important source of droplet spectral broadening in adiabatic volumes of warm convective clouds. The key idea is that, in a turbulent environment, droplets follow different trajectories, and this leads to wide droplet spectra for droplets arriving at a given location inside a cloud. This has been referred to as eddy hopping. Past theoretical studies and idealized turbulence simulations applying direct numerical simulation (DNS)-like approaches suggested that eddy hopping can potentially explain the difference between the observed droplet spectra and those predicted from adiabatic ascent in a nonturbulent volume. This paper considers droplet spectra in an adiabatic volume not far from the cloud base in an unprecedented high-resolution (7.5-m grid length) three-dimensional (3D) simulation of a warm turbulent cumulus congestus cloud applying Lagrangian particle–based microphysics. The spectral width approaches several tenths of 1 µ m in the 3D simulation versus only up to 0.2 µ m in a reference nonturbulent adiabatic parcel. We apply an idealized one-dimensional stochastic cloud updraft model that either excludes or includes turbulent vertical velocity fluctuations to show how the fluctuations affect cloud condensation nuclei (CCN) activation and subsequent growth of cloud droplets. Droplet spectra are significantly wider when effects of turbulence are included. The more complete droplet growth equation that includes kinetic, surface tension, and solute effects above the cloud base significantly adds to the variability of cloud droplet growth in the turbulent flow and thus to the adiabatic spectral width at a given height within the simulated cloud.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d73b64k2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright 2025 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:44:08.538852

Metadata language

eng; USA