A major challenge in numerical weather prediction models is the ability to accurately simulate the microphysical properties and growth of ice hydrometeors in clouds. Eulerian bulk microphysics schemes in these models tend to obscure the properties and evolution of individual ice crystals, often resulting in inaccurate simulations of storm structures. To address this issue, this study presents a novel ice crystal trajectory growth (ICTG) model that simultaneously grows and advects individual ice crystals while tracking their evolving properties along their trajectories. The model is evaluated on a 3D quasi-idealized leading-convective, trailing-stratiform squall line simulation. The ICTG model successfully produced a spatial distribution of ice crystal trajectories consistent with the simulated reflectivity structure of the storm above the melting level. Smaller initialized crystals (d = 0.5 mm) collected more rime and fell out primarily in the leading convective line. The ICTG model's realistic production of varied crystal growth properties owing to differences in transport and initial size suggests that it can be a valuable tool for learning about ice microphysical processes in a variety of cold cloud systems.