Quantifying adiabatic motion in the outer radiation belt and ring current with invariant matching

Adiabatic motion is a fundamental reversible process for geomagnetically trapped particle populations, including particles comprising the ring current and radiation belts. During adiabatic motion, a particle's trajectory in configuration space responds to sufficiently slow changes in the magnetospheric magnetic field. Previous research has highlighted expected patterns in adiabatic motion, such as radial motion or the D st effect. In this work, we introduce a method we call Invariant Matching for quantifying adiabatic motion between a pair of magnetospheres. This method can be applied to both simulation and semi-empirical magnetic field models, is computationally efficient, and in particular does not require tracing the particle trajectories. In this work, we use the Tsyganenko et al., Journal of Geophysical Research: Space Physics, 2005, 110 (TS05) magnetic field model, and present adiabatic motion between a storm commencement, the time of the storm's D st minimum, and a nominal recovery time. We also analyze adiabatic motion which occurs in response to enhancements of individual major current systems (including the ring current, Chapman-Ferraro current, Birkeland current, and tail current). Our methodology yields vector fields quantifying the displacement of mirror points throughout the magnetosphere, prepared in a way appropriate for application to both outer radiation belt and ring current populations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Quantifying Adiabatic Motion in the Outer Radiation Belt and Ring Current with Invariant Matching (Paper Code and Data)

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author
Publisher UCAR/NCAR - Library
Publication Date 2024-05-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:51.750289
Metadata Record Identifier edu.ucar.opensky::articles:27327
Metadata Language eng; USA
Suggested Citation . (2024). Quantifying adiabatic motion in the outer radiation belt and ring current with invariant matching. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7rb78t4. Accessed 03 January 2026.

Harvest Source