An investigation of coupled atmospheric and oceanic boundary layers using large-eddy simulation

The marine atmospheric boundary layer (ABL) and oceanic boundary layer (OBL) are a two-way coupled system. At the ocean surface, the ABL and OBL share surface fluxes of momentum and buoyancy that incorporate variations in sea surface temperature (SST) and currents. To investigate the interactions, a coupled ABL–OBL large-eddy simulation (LES) code is developed and exercised over a range of atmospheric stability. At each time step, the coupling algorithm passes oceanic currents and SST to the atmospheric LES, which in turn computes surface momentum, temperature, and humidity fluxes driving the oceanic LES. Equations for each medium are time advanced using the same time step but utilize different grid resolutions: the horizontal grid resolution in the ocean is approximately four times finer, e.g., (Δ x o , Δ x a ) = (1.22, 4.88) m. Interpolation and anterpolation (its adjoint) routines connect the atmosphere and ocean surface layers. In the simplest setup of a statistically horizontally homogeneous flow, the largest scale ABL turbulent shear-convective rolls leave an imprint on the OBL currents in the upper layers. This result is shown by comparing simulations that use coupling rules that are applied either instantaneously at every x – y grid point or averaged across an x – y plane. The spanwise scale of the ABL turbulence is ∼1000 m, while the depth of the OBL is ∼20 m. In these homogeneous, fully coupled cases, the large-scale spatially intermittent turbulent structures in the ABL modulate SST, currents, and the connecting momentum and buoyancy fluxes, but the mean profiles in each medium are only slightly different.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2025 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sullivan, Peter P. ORCID icon
McWilliams, J. C.
Patton, E. G.
Publisher UCAR/NCAR - Library
Publication Date 2025-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-12-24T17:51:59.130464
Metadata Record Identifier edu.ucar.opensky::articles:43869
Metadata Language eng; USA
Suggested Citation Sullivan, Peter P., McWilliams, J. C., Patton, E. G.. (2025). An investigation of coupled atmospheric and oceanic boundary layers using large-eddy simulation. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7765ksm. Accessed 04 February 2026.

Harvest Source