Evaluating how climate adaptation measures affect the interconnected water-energy resource systems of the Western United States

The Western US faces increasing water stress from the impacts of climate change, making it difficult to meet water demands for the region's cities, agriculture, and hydropower generators. Existing literature suggests that climate adaptation measures such as water conservation, cropland retirement, wastewater recycling, and managed aquifer recharge can alleviate some of these challenges. Few analyses, however, compare the relative efficacy and system‐wide effects of these adaptations under different climate projections across the entire Western United States. Here we use a Western US‐wide water systems model to evaluate, by sector and sub‐region, how the widespread implementation of these adaptive measures impacts water demands, water deliveries, and electricity use related to the water system for three different climate projections. We find that wastewater recycling has greater potential to lower unmet indoor water demands than urban indoor water conservation measures. However, when implemented at scale, indoor water conservation reduces electricity use by an average of 683 Terawatt hours while wastewater recycling increases energy use by an average of 721 Terawatt hours, cumulatively from 2020 to 2070. Cropland retirement and aquifer recharge adaptations increase the ability to meet agricultural water demand, increase groundwater storage, and reduce summertime electricity use. While most of these findings are consistent across different climate projections, the benefits of aquifer recharge are sensitive to spatial variation of precipitation. Given the limitations and tradeoffs of each individually, the results suggest that a portfolio of adaptation measures will be needed for a climate‐resilient water and energy future in the Western US.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Singhal, A. ORCID icon
Szinai, J. K.
Yates, David ORCID icon
Jones, A. D.
Publisher UCAR/NCAR - Library
Publication Date 2025-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-12-24T17:45:49.812412
Metadata Record Identifier edu.ucar.opensky::articles:43906
Metadata Language eng; USA
Suggested Citation Singhal, A., Szinai, J. K., Yates, David, Jones, A. D.. (2025). Evaluating how climate adaptation measures affect the interconnected water-energy resource systems of the Western United States. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7k93d0m. Accessed 04 February 2026.

Harvest Source