We measured the vertical profiles of backscatter ratio (BSR) using the balloon-borne, lightweight Compact Optical Backscatter AerosoL Detector (COBALD) instruments above Linzhi, located in the southeastern Tibetan Plateau, in the summer of 2014. An enhanced aerosol layer in the upper troposphere-lower stratosphere (UTLS), with BSR (455 nm) > 1.1 and BSR (940 nm) > 1.4, was observed. The color index (CI) of the enhanced aerosol layer, defined as the ratio of aerosol backscatter ratios (ABSRs) at wavelengths of 940 and 455 nm, varied from 4 to 8, indicating the prevalence of fine particles with a mode radius of less than 0.1 pm. We find that unlike the very small particles (mode radius smaller than 0.04 mu m) at low relative humidity (RHi < 40 %), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity. This result indicates that water vapor can play a very important role in increasing the size of fine particles in the UTLS over the Tibetan Plateau. Our observations provide observation-based evidence supporting the idea that aerosol particle hygroscopic growth is an important factor influencing the radiative properties of the Asian Tropopause Aerosol Layer (ATAL) during the Asian summer monsoon.