Storm Peak Laboratory Scanning Mobility Particle Sizer (SMPS) Data
To Access Resource:
Questions? Email Resource Support Contact:
-
EOL Data Support
datahelp@eol.ucar.edu
Temporal Range
-
Begin: 2024-12-01T07:04:53Z End: 2025-04-16T07:00:25Z
| Resource Type | dataset |
|---|---|
| Temporal Range Begin | 2024-12-01T07:04:53Z |
| Temporal Range End | 2025-04-16T07:00:25Z |
| Temporal Resolution | N/A |
| Bounding Box North Lat | 40.45500 |
| Bounding Box South Lat | 40.45500 |
| Bounding Box West Long | -106.74400 |
| Bounding Box East Long | -106.74400 |
| Spatial Representation |
grid |
| Spatial Resolution | N/A |
| Related Links |
Documentation #1 : S2nowCLIME_SMPS_README.pdf |
| Additional Information | N/A |
| Resource Format |
Tabular/Columnar ASCII |
| Standardized Resource Format |
ASCII |
| Asset Size |
39 MB |
| Legal Constraints |
none |
| Access Constraints |
Access to these data requires a password. |
| Software Implementation Language | N/A |
| Resource Support Name | EOL Data Support |
|---|---|
| Resource Support Email | datahelp@eol.ucar.edu |
| Resource Support Organization | N/A |
| Distributor | N/A |
| Metadata Contact Name | EOL Data Support |
| Metadata Contact Email | datahelp@eol.ucar.edu |
| Metadata Contact Organization | N/A |
| Author |
Anna Gannet Hallar Maria A. Garcia Gerardo Carrillo-Cardenas |
|---|---|
| Publisher | N/A |
| Publication Date | 2025-10-22T18:35:19 |
| Digital Object Identifier (DOI) | https://doi.org/10.26023/P9TS-G72F-KT0K |
| Alternate Identifier |
646.011 |
| Resource Version | 1.0 |
| Topic Category |
climatologyMeteorologyAtmosphere |
| Progress | completed |
| Metadata Date | 2025-11-10T23:22:23Z |
| Metadata Record Identifier | edu.ucar.eol::646.011 |
| Metadata Language | eng; USA |
| Suggested Citation | Anna Gannet Hallar, Maria A. Garcia, Gerardo Carrillo-Cardenas. (2025). Storm Peak Laboratory Scanning Mobility Particle Sizer (SMPS) Data. 1.0. https://doi.org/10.26023/P9TS-G72F-KT0K. Accessed 12 December 2025. |
Harvest Source
- ISO-19139 ISO-19139 Metadata