Observations of the scale dependence of height-resolved temperature (T) and water vapor (q) variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained from the Atmospheric Infrared Sounder (AIRS) are compared to those generated by state-of-the-art numerical weather prediction "analyses" and "free-running" climate model simulations with spatial resolution comparable to AIRS. The T and q spectra from both types of models are generally too steep such that small-scale variance is up to several factors smaller than AIRS. However, the two model analyses more closely resemble AIRS than the two free-running model simulations. Scaling exponents obtained for AIRS column water vapor (CWV) and height-resolved layers of q are also compared to the super-parameterized Community Atmospheric Model (SP-CAM) that highlight large differences in the magnitude of CWV variance and the relative flatness of height-resolved q scaling in SP-CAM. Height-resolved q spectra obtained from aircraft observations during the Variability of the American Monsoon Systems Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) demonstrate changes in scaling exponents that depend on the observations' proximity to the base of the subsidence inversion with scale breaks that occur at approximately the dominant cloud scale (~10-30 km). This suggests finer spatial resolution requirements must be considered for future satellite observations of T and q than those currently planned for infrared and microwave satellite sounders.