Five years of variability in the global carbon cycle: Comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models

Year-to-year variability in CO2 fluxes can yield insight into climate-carbon cycle relationships, a fundamental yet uncertain aspect of the terrestrial carbon cycle. In this study, we use global observations from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite for years 2015-2019 and a geostatistical inverse model to evaluate 5 years of interannual variability (IAV) in CO2 fluxes and its relationships with environmental drivers. OCO-2 launched in late 2014, and we specifically evaluate IAV during the time period when OCO-2 observations are available. We then compare inferences from OCO-2 with state-of-the-art process-based models (terrestrial biosphere model, TBMs). Results from OCO-2 suggest that the tropical grasslands biome (including grasslands, savanna, and agricultural lands within the tropics) makes contributions to global IAV during the 5 year study period that are comparable to tropical forests, a result that differs from a majority of TBMs. Furthermore, existing studies disagree on the environmental variables that drive IAV during this time period, and the analysis using OCO-2 suggests that both temperature and precipitation make comparable contributions. TBMs, by contrast, tend to estimate larger IAV during this time and usually estimate larger relative contributions from the extra-tropics. With that said, TBMs show little consensus on both the magnitude and the contributions of different regions to IAV. We further find that TBMs show a wide range of responses on the relationships of CO2 fluxes with annual anomalies in temperature and precipitation, and these relationships across most of the TBMs have a larger magnitude than inferred from OCO-2. Overall, the findings of this study highlight large uncertainties in process-based estimates of IAV during recent years and provide an avenue for evaluating these processes against inferences from OCO-2.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author
Publisher UCAR/NCAR - Library
Publication Date 2021-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:15:38.214264
Metadata Record Identifier edu.ucar.opensky::articles:24331
Metadata Language eng; USA
Suggested Citation . (2021). Five years of variability in the global carbon cycle: Comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7c82dp0. Accessed 30 December 2025.

Harvest Source